Tsunami excitation by inland/coastal earthquakes: the Green function approach

نویسندگان

  • T. B. Yanovskaya
  • F. Romanelli
  • G. F. Panza
چکیده

In the framework of the linear theory, the representation theorem is derived for an incompressible liquid layer with a boundary of arbitrary shape and in a homogeneous gravity field. In addition, the asymptotic representation for the Green function, in a layer of constant thickness is obtained. The validity of the approach for the calculation of the tsunami wavefield based on the Green function technique is verified comparing the results with those obtained from the modal theory, for a liquid layer of infinite horizontal dimensions. The Green function approach is preferable for the estimation of the excitation spectra, since in the case of an infinite liquid layer it leads to simple analytical expressions. From this analysis it is easy to describe the peculiarities of tsunami excitation by different sources. The method is extended to the excitation of tsunami in a semiinfinite layer with a sloping boundary. Numerical modelling of the tsunami wavefield, excited by point sources at different distances from the coastline, shows that when the source is located at a distance from the coastline equal or larger than the source depth, the shore presence does not affect the excitation of the tsunami. When the source is moved towards the coastline, the low frequency content in the excitation spectrum decreases, while the high frequencies content increases dramatically. The maximum of the excitation spectra from inland sources, located at a distance from the shore like the source depth, becomes less than 10% of that radiated if the same source is located in the open ocean. The effect of the finiteness of the source is also studied and the excitation spectrum is obtained by integration over the fault area. Numerical modelling of the excitation spectra for different source models shows that, for a given seismic moment, the spectral level, as well as the maximum value of the spectra, decreases with increasing fault size. When the sources are located in the vicinity of a shore, the synthetic mareograms calculated at distances greater than the source depth show that the maximum tsunami amplitude Correspondence to: F. Romanelli ([email protected]) decays with decreasing source-to-shore distance. The rate of decay is dependent on the dip, length and depth of the fault. The tsunami intensity, defined as maximum peak-topeak amplitude, decays with the inland distance of the source from the coast. At an inland distance equal to the source depth, it becomes 4–5 times less than that from a source in the open ocean. If the source is located under the coastline, the intensity of tsunami is approximately the same as for oceanic sources.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The 869 J gan tsunami deposit and recurrence interval of large-scale tsunami on the Pacific coast of northeast Japan

The fore-arc region of northeast Japan is an area of extensive seismic activity and tsunami generation. On July 13, 869 a tsunami triggered by a large-scale earthquake invaded its coastal zones, causing extensive deposition of well-sorted fine sand over the coastal plains of Sendai and S ma. Sediment analysis and hydrodynamic simulation indicate that the tsunami inferred to be triggered by a ma...

متن کامل

Tsunami inundation modeling for western Sumatra.

A long section of the Sunda megathrust south of the great tsunamigenic earthquakes of 2004 and 2005 is well advanced in its seismic cycle and a plausible candidate for rupture in the next few decades. Our computations of tsunami propagation and inundation yield model flow depths and inundations consistent with sparse historical accounts for the last great earthquakes there, in 1797 and 1833. Nu...

متن کامل

Numerical Modeling of Tsunami Waves Associated With Worst Earthquake Scenarios of the Makran Subduction Zone in the Jask Port, Iran

The recent studies show that the past researches may have significantly underestimated earthquake and tsunami hazard in the Makran Subduction Zone (MSZ) and this region is potentially capable of producing major earthquakes. In this study, the worst case possible earthquake scenarios of the MSZ are simulated using fully nonlinear boussinesq model to investigate tsunami hazards on the Jask Port, ...

متن کامل

The possibility of deeper or shallower extent of the source area of Nankai Trough earthquakes based on the 1707 Hoei tsunami heights along the Pacific and Seto Inland Sea coasts, southwest Japan

To validate the abundance of scenarios of large earthquakes in the Nankai Trough, we examined the effects of both lateral and vertical expansions of the source areas on maximum tsunami heights along the Pacific coast and Seto Inland Sea. The recently proposed Nankai Trough earthquake scenario (Mw = 9) has a maximum slip of 20 m near the trough axis. However, the predicted tsunami heights exceed...

متن کامل

Effect of slip distribution on nearfield tsunami amplitudes; the 1952 Kamchatka earthquake

We use the 1952 Kamchatka earthquake (Mw 8.8-9.0) and tsunami to explore the effect that internal slip distribution within a rupture has on tsunami amplitude in the nearfield. Our approach is to compare simulated tsunamis from 1952 Kamchatka with deposits in order to identify areas of high slip. Spatial variations in slip during tsunamigenic earthquakes result in variation in tsunami amplitude ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2002